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LETTER TO THE EDITOR 

Directed percolation and Reggeon field theory 

J L Cardyi- and R L Sugar$ 
t Department of Physics, University of California, Santa Barbara, California 93 106, USA 
$ Institute for Theoretical Physics, University of California, Santa Barbara, California 
93106, USA 

Received 17 September 1980 

Abstract. Directed bond percolation is shown to be in the same universality class as 
Reggeon field theory. The critical behaviour and critical exponents near the percolation 
threshold are thereby inferred. 

In the problem of directed bond percolation (Obukhov 1980), a preferred direction 
(labelled, say, by a coordinate t )  is chosen, and the bonds are oriented with respect to 
this direction. The probability that a given bond is present depends on its orientation, 
and percolation is allowed only in the direction of orientation of a given bond. In the 
extreme case which we shall consider, only those bonds oriented in the direction of 
increasing t are allowed, with probability p .  The problem then corresponds to a Markov 
process, since the probability P({x i } ,  t )  that a given set of sites (xi, t )  are connected to a 
given initial site depends in a straightforward way on the probabilities P({x j } ,  t - 1). If 
we regard the variable t as time, the allowed configurations of bonds will represent the 
time development of a random walk in x space in which branching, recombination and 
absorption can occur. Such models arise in chemistry and biology (Schlogl 1972). It 
was pointed out by Grassberger and Sundermeyer (1978) and Grassberger and de la 
Torre (1979) that such models are in the same universality class as Reggeon field theory 
(RFT) (Abarbanel et a1 1975b, Moshe 1978). This is a theory of the scattering of 
elementary particles at high energies and low-momentum transfers, in which t has the 
interpretation of the logarithm of the longitudinal momentum (rapidity) and x is the 
impact parameter. The correlation functions are related to scattering cross sections. 

In this Letter, we establish directly the connection between directed percolation and 
RFT. Since much work has been done on the latter, we can immediately deduce many 
results on the critical behaviour of the former. 

Since we are interested in calculating the probability G(xz, t 2 ;  xl, t l )  of percolation 
from (xl, tl) to (xz, f 2 )  (tl < t z )  irrespective of the other sites, a simple set of diagram- 
matic rules suffices. (1) Place bonds on the lattice in such a way that every bond is 
connected by other bonds to (xl, t l)  always in the direction of decreasing t, and to (xz, tz )  
in the direction of increasing t. (2) Insert a factor p for each bond. (3) Insert a factor (-1) 
for each closed loop. 

G is then the sum over all such terms. The last factor is to avoid multiple counting. 
For example, in figure 1 the diagram ( a )  counts all configurations where bonds AB1 and 
BIC are present, irrespective of whether ABz and BzC are present. Similarly for (b) .  
Thus the diagram (c) must be subtracted off to avoid double counting. This rule can be 
replaced by: (3)' Insert a factor -in for each vertex where n bonds meet. 
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Figure 1. Diagrams contributing to G(x, r + 2 ;  x ,  t ) .  ( a )  and ( b )  give a contribution + p z ,  
while (c) gives -p4. 

These rules may be used to give a formal expression for G as follows. Define 
commuting operators a (x, t )  and d ( x ,  t )  on each site (x, t ) ,  together with an operation 
Tr, which obey the algebra 

a 2 =ia  d 2 =  id 

Tr a = T r  d = 0 

Tr ad = 1. 

Then 

The central factor may be exponentiated in the form 

exp A C C ~ ( x ' ,  t ' )  ~ ( x '  - x, t' - t)a (x, t )  
X,l X ' , f '  

(3) 

where A = -In(l - p )  and V depends on the lattice structure. In general V is short- 
ranged, even in x' - x, and vanishes for t' s t. The Fourier-Laplace transform of V is 

W m 

V ( k , E ) = l  d D x l  d t e x p ( i k . x - E t ) V ( x , t ) = c ( l - r l E - r z k ' +  . . .  ) 
-m 0 

(4) 

where c is the number of sites connected to a given site in the direction of increasing t, 
and rl,  r2 are constants. Note that D is the number of transverse dimensions. Equation 
(_3) is related to RFT by a Gaussian transformation. Introducing scalar fields $(x, t ) ,  
$(x, t )  and taking the formal continuum limit 

G = T r  a(x2, t 2 ) d ( x l ,  t l )  I 9$9Jexp(  -1 dt  dDx(J(AV)-'ll/+a8+d$)). ( 5 )  

The operator V-' has the expansion 

V-' = C-'(I  + rid, - r2v2 + . . .I. (6 )  

Carrying out the operation Tr 
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where the correlation functions ($”$”) are computed with the weight function 
exp( -A [ 6, $1) with 

A = 

In (8) we have dropped terms which are of higher order in $, $, and higher-order 
derivatives, since they are irrelevant in D = 4 - E  transverse dimensions. A is just the 
action for RFT, and (7) is the elastic scattering cross section for high-energy particles in 
that theory. The only difference is that the various coupling constants, arbitrary in RFT, 
here depend on only p .  

The percolation transition happens in mean field theory when the coefficient of $$ 
vanishes, that is p = 1 -e-’”. 

In RFT the renormalisation group has been used to obtain a scaling law for G in the 
critical region (Migdal et al 1974a,b, Abarbanel and Bronzan 1974a, b). One findst 
(Abarbanel et a1 1976) 

dt dDx[(Ac)-l(rl$a,$ + r z V $ .  V4/;+ $$) - &$ +li($’$ + $$’)I. (8) J 

@(lP -PcI% IP -Pc lYZx2)  (9) u(4 DZ - 7 )  G ~ z ,  t z ;  xi, ti) - I P  -pel 
1,*2-Cu 

P - P r  

where x = xz -XI and t = t z  - tl. v, 77 and z are critical exponents which depend only on 
D, and @ is a calculable, universal scaling function which takes on different forms 
depending on whether p is greater than or less than pc. 

For P <Pc 

~ ( x ,  t )  - g z t - D / 2  exp(-x2/4a’t - ~ t )  

A - ( P c - P ) ”  

(10) 
with 

The ‘susceptibility’ is given by 

with y = v ( l +  q). 
For P > P c  

G(x, t ) -MM28(ut-IX/)  (13) 

M - (P - P c Y  (14) 

with 
4 1 - 4 2 )  - (P -Pc) 

and p = $vtfDz - q). M is the matrix element of the field $(x, t )  between the two 
lowest energy states which become degenerate for p 2 p c .  In RFT the total cross section 
is proportional to M 2 ,  and in the percolation problem M gives the probability of a site 
belonging to an infinite cluster. 

i We use the notation of RFT for the critical exponents, which is not quite uniform with that of statistical 
mechanics. 
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A is another critical exponent describing the approach to scaling (Frazer and Moshe 
1975). The scaling function Qc has been calculated in the one-loop approximation 
(Abarbanel et a1 1975a, Frazer et a1 1976). 

Considerable effort has gone into the calculation of the critical exponents of RFT. 
The expansion in E = 4 -D gives (Baker 1974, Bronzan and Dash 1974a, b, c) 

79 1 z = 1 + &E + (E ln ! + G)(EE + . . . 
v = 1 + E €  + . . . 1 

A = $ E  + . . . . 
These results are in agreement with the first-order E calculation of Obukhov (1980) for 
the directed percolation problem, although Obukhov’s definition of v appears to be 
different from that given in (1 1). Direct calculations for D = 2 have been made using the 
loop expansion. They yield (Cardy 1976) 

r )  = 0.26 * 0.02 z = 1-13*0*01 A =0*49*0*01. (17) 

The strong coupling expansion of a quantum spin model which is in the same 
universality class as RFT gives for D = 2 (Brower et a1 1978) 

r) = 0.238 * 0.008 t = 1016*0*01 v = 1,271 *0*007, (18) 

and for D = 1 

r) =0*317*0*002 z = 1*272*0*007 V =  1-736*0*001 A =0.57*0*03. (19) 

One of us (JLC) thanks W Kinzel for bringing this problem to his attention. Part of this 
work was carried out at the Summer Institute in Theoretical Physics, University of 
Washington, supported in part by NSF Grant No DMR-80-06328 and the M J 
Murdoch Charitable Trust. The remainder was supported by NSF Grant Nos PHY78- 
08439 and PHY77-27084. 

Note added in proof. After submitting this paper we learned of the work of Blease 
(1977a, b, c) and Kertbsz and Vicsek (1980). The series calculations of Blease are in 
excellent agreement with the RFT results quoted in this paper, using the scalinglaws (12) 
and (14). The Monte Carlo result (Kertbsz and Vicsek 1980) that v = 1.65 f 0.06 for 
D = 1 is consistent, if somewhat low. 
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